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Abstract

We present lightweight flow matching multilin-
gual text-to-speech (TTS) systems for Ojibwe,
Mi’kmaq, and Maliseet, three Indigenous lan-
guages in North America. Our results show
that training a multilingual TTS model on three
typologically similar languages can improve
the performance over monolingual models, es-
pecially when data are scarce. Attention-free
architectures are highly competitive with self-
attention architecture with higher memory ef-
ficiency. Our research not only advances tech-
nical development for the revitalization of low-
resource languages but also highlights the cul-
tural gap in human evaluation protocols, calling
for a more community-centered approach to hu-
man evaluation.

1 Introduction

Many world languages are currently endangered,
especially those spoken by historically marginal-
ized and Indigenous communities. Language re-
vitalization and reclamation is an ongoing effort
to ensure continued language vitality for commu-
nity self-determination and well-being (Oster et al.,
2014; McCarty, 2018; Bird, 2020). Among recent
efforts of language revitalization, TTS technology
is valued as a potential tool to assist the education
of Indigenous languages, as TTS models can flexi-
bly synthesize diverse learning materials to guide
pronunciation learning (Pine et al., 2022, 2024).

In general, speech synthesis for Indigenous lan-
guages is underdeveloped compared to the major-
ity of languages. The main barrier to developing
TTS technologies for Indigenous communities with
oral traditions is still the lack of data (Pine et al.,
2022, 2024). There are recent efforts to develop
speech synthesis systems for low-resource and In-
digenous languages, including Mundari (Gumma
et al., 2024), Kanien’kéha (also known as Mohawk;
Iroquoian), Gitksan (Tsimshianic), SEN COTEN

(Coast Salish) (Pine et al., 2022, 2024), Plains Cree
(Central Algonquian) (Harrigan et al., 2019) and
Ojibwe (Hammerly et al., 2023). Yet there is still
room for improvement and development in this
space.

In this study, we continue this line of effort and
develop TTS systems for Ojibwe, Mi’kmaq, and
Maliseet, the latter two of which haven’t received
any attention from the speech processing commu-
nity yet. Our study explicitly tackles several chal-
lenges in designing speech technology for Indige-
nous communities.

• First, it is generally impractical to bring In-
digenous members to labs for recording, so we
demonstrate a community-centered approach
to allow speakers to record their own voices
at their own pace.

• Secondly, as collecting Indigenous speech at
scale is difficult, we show that training a flow
matching multilingual TTS models (Mehta
et al., 2024) with typologically similar lan-
guage varieties can help improve the synthesis
performance in low-resource settings.

• Thirdly, since the TTS system is likely to
be deployed in common computing devices,
we also implemented attention-free architec-
tures, including FNet (Lee-Thorp et al., 2022),
Mamba2 (Dao and Gu, 2024) and Hydra
(Hwang et al., 2024) that closely match the
performance of self-attention models in TTS
but are generally more efficient in deploy-
ment.

• Finally, we also discuss the need to adapt cur-
rent experimental paradigms to better work
with Indigenous communities.

The code is available at: https://github.com/
ShenranTomWang/TTS.
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Language Speaker Gender Train Dev Test
Duration Samples Duration Samples Duration Samples

Ojibwe JJ M 11h 49min 23s 11,062 6min 38s 100 6min 18s 100
Ojibwe NJ F 1h 41min 14s 2404 4min 21s 100 4min 9s 100

Mi’kmaq MJ F 2h 22min 57s 1116 12min 22s 100 12min 30s 100
Maliseet AT M 7h 15min 25s 3628 12min 16s 100 12min 27s 100

Table 1: A summary of the Indigenous speech corpora in this study.

2 Data Collection

Languages We worked closely with speakers
from three Indigenous languages of Canada:
Ojibwe, Mi’kmaq, and Maliseet. The three lan-
guages are genetically related. Ojibwe is spoken
around the Great lakes of North America and is
part of the Central branch of the Algonquian fam-
ily, while Mi’kmaq and Maliseet are spoken in
the Maritimes and are classed within the Eastern
branch of the Algonquian family. According to
estimates from the 2021 Statistics Canada Survey,
there are 25,440 speakers of Ojibwe, 9,000 speak-
ers of Mi’kmaq, and 790 speakers of Maliseet
(Robertson, 2023). All language communities are
actively involved in significant efforts to document
and ensure the continued vitality of their languages.

Data collection Most Indigenous speakers flu-
ent in their own languages are senior speakers. It
is infeasible to bring them to a sound-proof lab
for recording at a university. Instead, we adopted
a community-centered approach that allows the
speakers to have full control over the speech record-
ing process in the comfort of their own home, fol-
lowing the protocol from a prior study (Hammerly
et al., 2023).

In each case, we used texts identified by the
community members as representative of their di-
alect and writing system as the basis for the data
set. These texts were then split into individual
utterances (complete sentences or phrases) and
loaded into the prompting and recording program
SpeechRecorder (Draxler and Jänsch, 2004). The
program allows speakers to read and record utter-
ances at their own pace, easily re-record in the case
of an error or disfluency, and package and upload
recorded utterances into secure cloud storage as
they complete them.

Data partition We resampled the recorded audio
to 22,050Hz. For each speaker, we reserved 100
random samples for validation and another 100
random samples for test. The rest of the speech
samples were used for model training. The detailed

statistics of our data were summarized in Table 1.
Since each of our datasets has a different size, we
applied oversampling to our multilingual training
dataset by duplicating training samples such that
they contain roughly the same duration for each
speaker.

3 Method

3.1 MatchaTTS
Our system is built upon Matcha-TTS (Mehta et al.,
2024), a fast TTS model based on conditional flow
matching, a class of probabilistic generative model
capable of generating high-fidelity image and audio
(Lipman et al., 2023). The original Matcha-TTS
consists of a text encoder, a duration predictor, and
a flow matching decoder. The text encoder trans-
forms the text input into hidden states, which are
then upsampled to the output length based on the
duration predictor. The flow matching decoder pre-
dicts the final mel spectrogram through iterative
denoising steps conditioning on the upsampled hid-
den states.

The original MatchaTTS model was only de-
signed for single-speaker TTS. For multilingual
speech synthesis, we added learnable speaker and
language embeddings for each unique speaker and
language, a common technique for multilingual
models (Cho et al., 2022). Both embeddings were
concatenated with the output of the text encoder,
which was then fed into the flow-matching decoder
for mel-spectrogram prediction. By default, the
flow-matching decoder uses 10 inference steps to
perform inference.

3.2 Sequence mixing layers
The multilingual MatchaTTS utilizes attention for
sequence mixing with 40M parameters, yet its
quadratic complexity is not ideal for efficient de-
ployment. Here we also explore different attention-
free layers that can also mix information across
sequences to improve the efficiency of MatchaTTS.
We replace self-attention with each of the follow-
ing layers. For cross-attention, we concatenate the
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Model F0 RMSE↓ LAS RMSE↓ MCD↓ PESQ↑ STOI↑ VUV F1↑ FID↓ MOS↑

Ojibwe JJ Natural - - - - - - - 4.16
Monolingual Self-Attention 57.317 5.284 22.044 1.228 0.036 0.845 0.005 2.71
Multilingual Mamba2 55.982 4.813 18.414 1.229 0.035 0.845 0.004 3.00
Multilingual Hydra 56.806 5.147 18.849 1.276 0.036 0.842 0.004 3.25
Multilingual FNet 58.871 5.720 19.463 1.170 0.036 0.824 0.006 3.42
Multilingual Attention 56.454 4.859 18.427 1.240 0.034 0.843 0.004 2.67

Ojibwe NJ Natural - - - - - - - 4.74
Monolingual Self-Attention 80.511 6.198 17.568 1.120 0.033 0.825 0.006 4.67
Multilingual Mamba2 89.879 6.311 17.506 1.111 0.028 0.820 0.005 4.56
Multilingual Hydra 87.509 6.676 18.036 1.128 0.029 0.830 0.006 4.70
Multilingual FNet 97.015 6.728 19.271 1.099 0.030 0.787 0.012 4.69
Multilingual Attention 86.446 6.462 17.414 1.147 0.028 0.835 0.006 4.77

Mi’kmaq MJ Natural - - - - - - - -
Monolingual Self-Attention 138.890 8.614 21.720 1.110 0.039 0.640 0.006 -
Multilingual Mamba2 139.574 7.831 22.060 1.165 0.038 0.643 0.005 -
Multilingual Hydra 138.157 7.128 21.694 1.210 0.038 0.649 0.005 -
Multilingual FNet 144.566 7.761 21.748 1.183 0.038 0.631 0.005 -
Multilingual Attention 138.365 7.357 21.588 1.165 0.037 0.667 0.003 -

Maliseet AT Natural - - - - - - - -
Monolingual Self-Attention 79.807 9.066 19.576 1.262 0.031 0.657 0.005 -
Multilingual Mamba2 77.725 8.565 19.152 1.213 0.038 0.727 0.007 -
Multilingual Hydra 79.834 8.414 18.129 1.500 0.035 0.728 0.006 -
Multilingual FNet 76.308 8.947 19.058 1.259 0.037 0.723 0.008 -
Multilingual Attention 75.267 8.032 18.173 1.316 0.032 0.742 0.005 -

Table 2: Evaluation results for each speaker across all models in float32.

inputs and put them through each layer.

Mamba2 Mamba2 (Dao and Gu, 2024) is a se-
lective state-space model (SSM)(Gu et al.; Gu and
Dao, 2023) that can perform sequence mixing with
subquadratic complexity. SSMs have been shown
to be effective in speech generation tasks (Zhang
et al., 2024; Miyazaki et al., 2024). In Mamba2,
the selective SSM can be formulated as follows:

ht = Atht−1 +Btxt

yt = Ctht

where Bt and Ct are input-dependent weights
and At = αtI is a diagonal matrix. The input-
dependent weights allow Mamba2 to selectively
focus on the information across time steps, mak-
ing it effective for sequence processing. Mamba2
is closely related to transformers. If At = I, it
is equivalent to the formulation of linear attention
(Katharopoulos et al., 2020; Dao and Gu, 2024).

In our TTS model, we replaced the attention
modules of MatchaTTS with Mamba2 blocks. No-
ticeably, Mamba2 modules have more parameters
than attention modules. In order to keep the total
number of parameters consistent, we shrunk the
encoder and decoder hidden dimension size by 3

4 ,
resulting in around 38M parameters in total.

Hydra As the original Mamba2 is uni-
directional, Hydra (Hwang et al., 2024) is a
bidirectional extension of Mamba2 but still
maintains the subquadratic complexity. Below we
provide an overview of Hydra.

State-space models, as discussed before, can be
formulated by:

y = SSM(A,B,C)(x) = Mx

Where x is the input, y is the output. Our goal is
then to find the matrix M with desired properties.
Current SSMs such as Mamba2 use semiseparable
matrices for M. Hydra takes a step further and uses
quasiseparable matrices for M, whose computation
complexity remains subquadratic and has the nice
properties of being able to process inputs in order
and reverse. Formally, a matrix is N-quaiseparable
iff any submatrix from either the strictly upper or
lower triangle has a rank of at most N. Specifically,
quasiseparable matrices can be decomposed into
semi-separable matrices via:

QS(x) = shift(SS(x)) + flip(shift(SS(flip(x)))) +Dx

Where QS(·) and SS(·) denote matrix mulplica-
tions of quasiseparable and semiseparable matrices
respectively, flip(·) denotes the action of revers-
ing the input, shift(·) refers to the action of shift-
ing the input one position to the right (padding
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with 0 at the beginning), and D is a diagonal ma-
trix. The SS() operation allows for the selection
of any SSMs and we selected the selective SSM in
Mamba2. This allows Hydra to perform bidirec-
tional sequence mixing in linear complexity.

While Hydra has not been applied to TTS yet, its
bidirectionality makes it potentially more powerful
than Mamba2. Hydra layers were used to replace
all attention modules in MatchaTTS. Hydra also
has more parameters than attention, therefore we
also shrunk the encoder and decoder hidden dimen-
sion size by 3

4 , resulting in around 39M parameters
in total.

Discrete Fourier Transform Discrete Fourier
Transform has proven to be a viable sequence mix-
ing method with a complexity of O(L logL)(Lee-
Thorp et al., 2022) and works well for speech (Chen
et al., 2024). We replaced all attention modules of
the MatchaTTS with the FFT layer in FNet.

The FFT layer performs a 2D Fast Fourier Trans-
form, on hidden dimensions and on the sequence
dimension of the input and eventually takes the real
part of the output. Formally, it can be formulated
as:

y = R(Fseq(Fh(x)))

Here, R(·) denotes the action of obtaining real parts
of the input, and Fdim(·) denotes the action of
performing FFT on the dim dimension of input.

By the duality of the Fourier transform, FNet
can be thought of as alternating between multipli-
cations and convolutions. Since this operation is
parameter-free, the FNet model has only around
31M parameters.

4 Experiments

Training As these languages all use a phoneti-
cally transparent Latin alphabet, we used a simple
character-based tokenizer to tokenize all sentences.
Punctuations were all removed except for the apos-
trophe in Ojibwe, which plays a role in Ojibwe
phonology. Monolingual models were trained for
each individual speaker, whereas multilingual mod-
els were trained on all speakers with different se-
quence mixing layers. All experiments were run on
a single A100 40GB GPU for a fixed 200 epochs.
Full training details are available in Appendix A.

Vocoder For waveform generation, we trained
a Vocos vocoder (Siuzdak, 2024) on all training
samples. Vocos is a frequency domain vocoder

that closely matches the performance of time-
domain vocoders like Hifi-GAN (Kong et al., 2020)
and diffusion-based vocoder like Fregrad (Nguyen
et al., 2024) but with much higher throughput.
Since vocoder is not the focus, we provided their
evaluation results in Appendix D.

5 Results and Discussions

Objective Evaluation We perform our objec-
tive evaluation results with Fundamental Fre-
quency Root Mean Square Error (F0 RMSE), Log-
amplitude RMSE (LAS RMSE), Mel Cepstral Dis-
tortion (MCD), Perceptual Evaluation of Speech
Quality (PESQ), Short-Time Objective Intelligibil-
ity (STOI), Voiced/Unvoiced F1 (VUV F1) and
MFCC Frechet Distance (FID), similar to contem-
prary works (Li et al., 2024; Lv et al., 2024).

Results in Table 2 suggest that multilingual mod-
els generally outperform monolingual models in
all languages. Training on typologically similar
languages does help alleviate the lack of data for
individual languages, since the model can learn
from the commonalities in these languages. Such
findings can also provide guidance for the future
collection of Indigenous speech datasets. We can
prioritize dataset diversity over quantity, as a large
quantity of speech data from a single language is
also hard to collect.

While the self-attention MatchaTTS dominates
most objective metrics, other attention-free archi-
tectures also match its performance closely. No sin-
gle model dominates all objective metrics. Hydra’s
performance is particularly close to self-attention,
suggesting that it is a strong competitor. Its bidirec-
tional nature also allows it to outperform Mamba2.
FNet underperforms all other models due to its
parameter-free nature.

In terms of computational efficiency, as shown
in Table 3, all attention-free architectures are much
more memory-efficient than self-attention models,
and memory saving is more prominent when the
batch size is large. However, the attention-free
architectures do not necessarily reduce computa-
tion time, presumably because our model is small
enough that their advantages are not obvious.

Subjective Evaluation Despite these challenges,
in evaluating the current work, we designed sepa-
rate mean opinion score (MOS) surveys for each
language. For each TTS voice, the survey in-
cluded 10 generated utterances from each of the
five models and 10 utterances of natural speech.
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Batch Size Self-attention Mamba2 Hydra FNet

Throughput (generated speech/s) 400 273.83 245.54 198.99 241.05
Real-time factor 1 0.03 0.06 0.06 0.03
Memory usage 400 4.6G 2.3G 2.4G 2.5G
Memory usage 1 245M 202M 235M 230M

Table 3: The time and memory efficiency of different sequence-mixing layers in float32 on a single A100 40G.

The detailed design is described in Appendix E.
We were able to recruit three raters for Ojibwe but
one did not complete the survey. For Mi’kmaq and
Maliseet, we were not able to obtain MOS rating
due to the limited number of speakers. Generally
speaking, the MOS ratings are largely consistent
with the objective metrics (see Table 2).

As recently discussed in Pine et al. (2024), there
are many challenges and questions to be raised
when conducting a subjective evaluation of speech
synthesis with Indigenous communities. We also
find that, due to the gap in cultural norms, the use
of standard measures like MOS and the current ex-
perimental paradigm may not always be viable in
determining the quality of synthetic speech. For
example, despite our instructions, one Ojibwe rater
rated 5 for all Ojibwe NJ’s voices, regardless of
whether it was natural or synthetic. We believe
this may have been due to a reluctance to comment
negatively on the voice, even when it was synthetic.
The concept of participating in controlled experi-
ments and judging synthetic voices, in general, is
not a natural task, and cultural norms can amplify
this. This implies that researchers working with In-
digenous communities should design more creative
measures that also conform to the cultural norms of
the relevant community. We plan to conduct such
work as we continue development of these systems

6 Conclusion

In this paper, we report our ongoing efforts to de-
velop TTS systems with and for the Indigenous
community. Our experiments demonstrate that
training multilingual TTS models on similar lan-
guages can partially compensate for the lack of data
for individual languages. In the future, we will be
working with the relevant communities and schools
to deploy these systems for Indigenous language
education.

7 Ethical statements

Our research would not have been possible with-
out the support of the Indigenous communities

involved. The subjective evaluation experiments
were approved by the institutional ethics review
committee. All Indigenous participants in the study,
including the voice donors and raters, participated
voluntarily and received fair compensation for their
contributions.

The goal of our research is to develop TTS tools
for Indigenous communities. We are currently ac-
tively working with learners and teachers learning
these Indigenous languages at school. However,
TTS technology might potentially be misused for
impersonation and deception, which can be partic-
ularly dangerous for the Indigenous communities
as they are not frequently exposed to such tech-
nologies. We will continue to work alongside these
communities to inform them about the benefits as
well as security concerns of speech technologies.

8 Limitation

Our study is still limited in several aspects. First,
as all speech recordings were recorded at the speak-
ers’ own residence, there are still ambient noises in
some of the recordings. These background noises
limit the overall performance of TTS systems. Sec-
ondly, we were not able to successfully conduct
human MOS ratings, which complicates the inter-
pretation of the results.

Secondly, while we would like to make the col-
lected data publicly available for replication and
language documentation research, we were unable
to do so this time, as we were not able to obtain
the consent of the Indigenous voice donors at this
moment. The primary concern is the malicious use
of the data that might harm the communities. How-
ever, we will continue to work with them and aim
for more open-source corpora in the long run.

Our research currently focuses mostly on ma-
chine learning system development. To make
speech technology truly beneficial to the Indige-
nous communities, more human-centered designs
that take into consideration the community-specific
cultural norms will also be needed to deploy these
systems to the benefit of the Indigenous communi-
ties (Noe and Kirshenbaum, 2024).
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A Training details

For the purpose of replication, all training details
are provided in Table 4.
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Figure 1: Throughput comparison between different
models and data types. Evaluations are all performed
on a single A100 GPU with a batch size of 400.

B Benchmarking efficiency

Throughput We measured the throughput of
each multilingual model with different data types
(bfloat16, float16, and float32). Results are
shown in Figure 1. It can be seen that the
Mamba2 model yields the highest throughput in
half-precision, while Attention has the highest
throughput in full-precision. FNet has slightly
lower throughput than Attention, which we believe
is because there is limited optimization to the ker-
nel of the FFT algorithm. Amongst all the models,
Hydra has the lowest throughput in all precisions.

Peak Memory Usage We measured peak mem-
ory usage for both batched and one-by-one syn-
thesis for all our models under using data types
(float16, bfloat16 and float32). Results are
shown in Table 5. It is seen that under all settings
FNet is the most memory-efficient implementation
as it is parameter-free. Hydra and Mamba2 have
similar memory usage when performing one-by-
one synthesis, but Hydra has slightly lower mem-
ory usage in batched synthesis. Attention has the
highest memory usage among all models and con-
sumed approximately twice the memory required
by other implementations for batched synthesis.

C Additional results

We also provide objective evaluation results us-
ing float16 and bfloat16 data types in Tale 6.
Compared to float32, performing in inference in
float16 and bfloat16 data types do not bring
perceptible degradation of speech quality.

Real Time Factor We also measured the real
time factor (RTF) of each multilingual model with
different data types. Results are shown in Figure
2. The FNet model is the fastest among all models
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Self-Attention FNet Mamba2 Hydra

Speaker embedding dimension 256 256 256 256
Language embedding dimension 192 192 192 192
Encoder hidden channels 640 640 640 640
Encoder filter channels 768 768 768 768
Encoder dropout rate 0.1 0.1 0.1 0.1

Decoder in channels 160 160 160 160
Decoder out channels 80 80 80 80
Decoder downsampling in channels 256 256 192 192
Decoder hidden dimension 256 256 192 192
Upsampling in channels 256 256 192 192
Decoder hidden blocks 2 2 2 2

Optimizer type Adam Adam Adam Adam
Learning rate 1.00e-06 1.00e-04 1.00e-04 1.00e-04
Scheduler - Cosine Cosine Cosine

Table 4: Training details, including dimensions and optimizer/scheduler information.

Data Type Batch size Self-Attention FNet Hydra Mamba2

float16 400 3.75G 1.35G 1.45G 1.5G
bfloat16 400 3.75G 1.35G 1.45G 1.5G
float32 400 4.6G 2.3G 2.4G 2.5G
float16 1 133M 112M 127M 127M
bfloat16 1 133M 112M 127M 127M
float32 1 245M 202M 235M 230M

Table 5: Peak memory usage during inference.
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Figure 2: RTF comparison between different models
and data types. Evaluations are all performed on a single
A100 GPU.

in every setting, followed by the Attention model,
Mamba2 model, and Hydra model.

D Vocoder comparison

We compared three representative vocoders for
waveform generation, namely, a time-domain
vocoder HiFi-GAN (Kong et al., 2020), a
frequency-domain vocoder Vocos (Siuzdak, 2024),
and a diffusion-based vocoder Fregrad (Nguyen
et al., 2024). For HiFi-GAN, we directly used the
pretrained universal HiFi-GAN1. For both Vocos

1https://github.com/jik876/hifi-gan

and Fregrad, we trained them on all training sam-
ples with the default parameters in their official
implementation23. Objective results on test sam-
ples are shown in Table 7. Since Vocos leads over
other models on most objective metrics and RTF.
We finally chose Vocos as our vocoder in all evalu-
ations of TTS models.

E Subjective evaluation

Each survey included 10 generated utterances from
each of the five models and 10 utterances of natural
speech. This resulted in 120 total utterances for the
Ojibwe survey (60 from each speaker) and 60 for
the Mi’kmaq and Maliseet models. The generated
utterances were created with the text from utter-
ances that had been withheld from model training.
The study was deployed through PCIbex (Zehr and
Schwarz, 2018) and consisted of a series of trials
where a single utterance was played and partici-
pants could rate the naturalness of each sentence
on a sliding scale. The data from this scale was
recorded as an integer value between 1-99 with the
bottom of the scale (1) labeled unnatural and the
top of the scale (99) labeled natural. At the time of
writing, we have only been able to recruit two par-

2https://github.com/gemelo-ai/vocos
3https://github.com/kaistmm/fregrad
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Model F0 RMSE↓ LAS RMSE↓ MCD↓ PESQ↑ STOI↑ VUV F1↑ FID↓

Maliseet AT float16
Monolingual Self-Attention 84.268 9.064 19.547 1.217 0.032 0.655 0.007
Multilingual Mamba2 77.949 8.572 19.143 1.191 0.035 0.728 0.006
Multilingual Hydra 79.559 8.396 18.103 1.453 0.032 0.735 0.005
Multilingual FNet 76.503 8.945 19.064 1.259 0.036 0.723 0.009
Multilingual Attention 75.395 8.045 18.166 1.344 0.035 0.745 0.004

Maliseet AT bfloat16
Monolingual Self-Attention 78.399 8.575 19.155 1.188 0.035 0.727 0.006
Multilingual Mamba2 79.160 8.419 18.101 1.505 0.030 0.732 0.005
Multilingual Hydra 77.275 8.981 19.069 1.250 0.036 0.719 0.009
Multilingual FNet 73.732 8.082 18.184 1.346 0.036 0.741 0.006
Multilingual Attention 80.352 9.021 19.552 1.243 0.031 0.657 0.006

Mi’kmaq MJ float16
Monolingual Self-Attention 139.765 7.820 22.069 1.139 0.039 0.641 0.002
Multilingual Mamba2 138.344 7.369 21.595 1.248 0.039 0.644 0.003
Multilingual Hydra 142.309 7.732 21.722 1.183 0.037 0.637 0.004
Multilingual FNet 139.886 7.341 21.591 1.167 0.035 0.664 0.004
Multilingual Attention 141.000 8.606 21.688 1.107 0.038 0.632 0.008

Mi’kmaq MJ bfloat16
Monolingual Self-Attention 139.291 8.616 21.677 1.110 0.039 0.631 0.006
Multilingual Mamba2 140.011 7.795 22.045 1.164 0.039 0.634 0.004
Multilingual Hydra 138.170 7.078 21.688 1.196 0.037 0.653 0.007
Multilingual FNet 142.229 7.693 21.744 1.169 0.038 0.630 0.004
Multilingual Attention 138.039 7.310 21.670 1.161 0.037 0.663 0.003

Ojibwe NJ float16
Monolingual Self-Attention 79.762 6.202 17.565 1.122 0.034 0.827 0.009
Multilingual Mamba2 89.746 6.319 17.523 1.113 0.031 0.822 0.005
Multilingual Hydra 86.628 6.675 18.035 1.136 0.029 0.831 0.006
Multilingual FNet 96.415 6.723 19.241 1.084 0.038 0.789 0.013
Multilingual Attention 87.666 6.463 17.419 1.151 0.034 0.832 0.006

Ojibwe NJ bfloat16
Monolingual Self-Attention 80.424 6.215 17.439 1.116 0.034 0.830 0.008
Multilingual Mamba2 90.767 6.334 17.527 1.117 0.032 0.820 0.006
Multilingual Hydra 86.739 6.698 17.978 1.139 0.030 0.831 0.006
Multilingual FNet 96.239 6.732 19.261 1.089 0.035 0.793 0.013
Multilingual Attention 92.625 6.452 17.427 1.134 0.033 0.838 0.008

Ojibwe JJ float16
Monolingual Self-Attention 57.697 5.270 22.044 1.248 0.036 0.842 0.004
Multilingual Mamba2 56.191 4.812 18.348 1.218 0.032 0.844 0.004
Multilingual Hydra 57.218 5.314 18.928 1.277 0.034 0.835 0.005
Multilingual FNet 58.915 5.720 19.522 1.167 0.032 0.823 0.006
Multilingual Attention 56.748 4.868 18.423 1.262 0.033 0.843 0.004

Ojibwe JJ bfloat16
Ojibwe JJ 56.987 5.261 22.065 1.232 0.038 0.845 0.005
Multilingual Mamba2 56.120 4.803 18.441 1.233 0.036 0.844 0.004
Multilingual Hydra 57.142 5.150 18.860 1.294 0.038 0.842 0.003
Multilingual FNet 58.680 5.737 19.493 1.168 0.036 0.824 0.005
Multilingual Attention 56.118 4.853 18.406 1.242 0.037 0.845 0.004

Table 6: Objective evaluation results in float16 and bfloat16.
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Model F0 RMSE↓ LAS RMSE↓ MCD↓ PESQ↑ STOI↑ VUV F1↑ RTF Parameter

Maliseet AT
Fregrad 10.537 6.431 11.754 2.449 0.791 0.916 0.179 1.78M
Hifi-GAN 8.122 6.610 5.475 2.431 0.869 0.907 0.053 13.92M
Vocos 7.216 5.982 5.372 3.209 0.835 0.927 0.025 7.82M

Mi’kmaq MJ
Fregrad 9.239 6.986 5.011 2.427 0.908 0.919 0.177 1.78M
Hifi-GAN 8.432 6.280 2.252 3.092 0.952 0.929 0.050 13.92M
Vocos 9.136 6.091 3.149 3.391 0.911 0.931 0.026 7.82M

Ojibwe NJ
Fregrad 8.728 7.437 13.315 2.501 0.904 0.949 0.425 1.78M
Hifi-GAN 8.157 6.947 6.272 2.675 0.945 0.944 0.062 13.92M
Vocos 7.916 6.576 6.786 3.070 0.925 0.952 0.038 7.82M

Ojibwe JJ
Fregrad 5.544 6.957 12.797 2.520 0.903 0.968 0.265 1.78M
Hifi-GAN 6.167 6.536 5.062 2.516 0.946 0.963 0.056 13.92M
Vocos 5.434 5.750 4.389 3.073 0.917 0.974 0.027 7.82M

Table 7: Objective evaluation results among vocoder models.

ticipants for the evaluation of the Ojibwe language
models, but plan to do more subjective evaluation
in the future.

The participants rated speech samples by adjust-
ing the naturalness, as shown in Fig 3. The specific
instructions are given in the following textbox.

Instructions

1. A short audio clip will be played and
you will be asked to rate how natural
it sounds to you by toggling a sliding
scale, the leftmost representing not nat-
ural at all, the rightmost representing
very natural and the centre of the scale
representing a neutral response

2. Focus on the sounds of the sentence,
not the meaning.

3. There is no correct or incorrect answer,
we are interested in how these audio
clips sound to YOU

4. Rate each sentence on its own, regard-
less of how simple or complicated it
seems

You will now move on to a practice trial
where you can try rating a sample audio clip.

Figure 3: The MOS rating interface.
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